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ABSTRACT: Over the past decade the use of machine learning in meteorology has grown rapidly. Specifically neural
networks and deep learning have been used at an unprecedented rate. To fill the dearth of resources covering neural
networks with a meteorological lens, this paper discusses machine learning methods in a plain language format that is tar-
geted to the operational meteorological community. This is the second paper in a pair that aim to serve as a machine learn-
ing resource for meteorologists. While the first paper focused on traditional machine learning methods (e.g., random
forest), here a broad spectrum of neural networks and deep learning methods is discussed. Specifically, this paper covers
perceptrons, artificial neural networks, convolutional neural networks, and U-networks. Like the Part I paper, this manu-
script discusses the terms associated with neural networks and their training. Then the manuscript provides some intuition
behind every method and concludes by showing each method used in a meteorological example of diagnosing thunder-
storms from satellite images (e.g., lightning flashes). This paper is accompanied with an open-source code repository to
allow readers to explore neural networks using either the dataset provided (which is used in the paper) or as a template for
alternate datasets.

KEYWORDS: Radars/Radar observations; Satellite observations; Forecasting techniques; Nowcasting;
Operational forecasting; Machine learning

1. Introduction and recent impressive demonstrations of neural networks
achieving similar forecasting performance to numerical weather
prediction (e.g., Weyn et al. 2020; Rasp and Thuerey 2021;
Ravuri et al. 2021; Espeholt et al. 2022; Keisler 2022; Lam et al.
2022; Bi et al. 2022; Nguyen et al. 2023; Chen et al. 2023), the
meteorological literature could benefit from a neural network—
specific plain language discussion and simple meteorological
example.

This paper follows the same organization as Part I. Section 2

In the previous part of this tutorial series Chase et al. (2022,
hereafter Part I) provided a survey of many of the most com-
mon traditional machine learning techniques that a meteorolo-
gist might encounter. This included: linear regression, logistic
regression, naive Bayes, decision trees, random forest, gradient
boosted trees, and support vector machines. Beyond discussing
the formulation of the methods, Part I also discussed the gen-
eral terms associated with machine learning and provided an

end-to-end machine learning example to detect lightning flashes provifies an introduction to neural network-based machine
within satellite and radar images. In this manuscript we con- leamning methods and defines common neural network terms.

tinue our explanation and tutorial of supervised machine learn- Section 3 discusses how the neural network methods discussed in

ing techniques by discussing a rapidly expanding category of section 2 can be applied to a meteorological example. Section 4
machine learning known as neural networks and deep learning. summarizes this paper. The specific neural network types cov-
While neural networks can be viewed similarly to the other ~ ered in this manuscript are perceptrons, artificial neural net-
methods described in Part I (i.e., an empirical tool for making ~ Works, convolutional neural networks, and “U”-shaped networks
predictions and classifications), there are numerous nuances (U-Net).
and different terms associated with neural networks that mo-
tivate their own detailed discussion. Further@ore, glven the 2. Neural network methods and common ferms
accelerated growth of neural networks (cf. Fig. 1le in Part I)

This section introduces many of the common terms that me-
teorologists would encounter while reading about or using out-
put from neural networks. The goal of this paper is to provide

@ Denotes content that is immediately available upon publica-  readers with the intuition behind the different neural network
tion as op€n access. . L1

methods as well as introduce common terms used within neural

networks so that readers can become familiar with them. This
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FIG. 1. Schematic of (a) a perceptron, (b) a biological neuron adapted from Henley (2021), and (c) a multilayer
perceptron.

order to remove some of the mystery of the more complex
mathematical nature of neural networks and hopefully achieve
the same level of intuition as the traditional methods.

Before describing the various types of neural networks,
also known as different architectures, we first define neural
networks as: the group of machine learning methods that use
a network of trainable weights that are organized in a struc-
ture that loosely resemble a biological brain. The name neural
network comes from the analogy of how the information is
passed in a biological brain and more specifically across neu-
rons. Simply, a biological brain observes some information,
which is then processed by a neuron and passed along a series
of connections to numerous other neurons resulting in a
thought or action.

Another common term that is used with neural networks is
deep learning. While deep learning is often perceived as a syno-
nym of neural networks by new users, it is actually a specific
subset of neural networks. Since there are many different defi-
nitions of what exactly deep learning is, deep learning is defined
here as a neural network that contains a minimum of two or
more hidden layers,l though often involves many more than
two layers (e.g., from tens to hundreds). This deep learning defi-
nition can be interpreted as a minimum complexity requirement
for a neural network to be considered deep learning.

a. Architectures of neural networks
1) THE PERCEPTRON

The first architecture of neural networks came from McCulloch
and Pitts (1943) in their formulation of a logical neuron, called

! Hidden layers are layers that do not directly interact with the
input or output of a neural network. These are discussed more
later.
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later a perceptron (and referred to later in this document as
nodes). A schematic of a perceptron is in Fig. 1a. The percep-
tron has some input data (i.e., features), which are altered by
weights and aggregated (i.e., summed). Then the aggregated
value is passed through an activation function which deter-
mines the output of the perceptron. This is similar to a biologi-
cal neuron (Fig. 1b; Henley 2021), where information is passed
to the neuron from the dendrites, aggregated at the cell body,
passed through the axon hillock function, and then results in
some output of the neuron.
Mathematically, the perceptron is

1) = a(z W, + b), )
i=1

where w; are the weights, x; are the n total input features, b is
the bias, and o is the activation function. Equation (1) will
look familiar to those who read Part I because in essence it is
the same as linear and logistic regression [Eq. (1) in Part IJ.
In fact, Eq. (1) is exactly logistic regression if the activation
function is the sigmoid function. The only difference is
how the weights w are determined, which is discussed later
(section 2b). Since it is effectively the same as logistic regres-
sion, the perceptron is used in a similar manner. For example,
we could use the same input features as Part I (e.g., minimum
brightness temperature) to determine if there were any lightning
flashes in a satellite image. Given the limited representational
capacity of a perceptron, their application in the meteorological
literature has been limited. One meteorological example can be
found in Kim et al. (2013), where a perceptron is used to remove
chaff* and clutter from radar data.

2 Military aircraft countermeasure for heat-seeking missiles.
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FIG. 2. Schematic of using each image pixel as input features to a multilayer perceptron [also known as an artificial neural network
(ANN)]. The leftmost image is the infrared brightness temperature. The second image is the same brightness temperature image but

coarsened for visualization purposes.

2) MULTILAYER PERCEPTRON (ARTIFICIAL NEURAL
NETWORK)

Akin to how many neurons make up a brain, the second type
of neural network is an extension of the single perceptron,
which includes multiple perceptrons and multiple layers of mul-
tiple perceptrons (Rumelhart et al. 1986). This multilayer per-
ceptron network is also known as an artificial neural network
(ANN; Fig. 1c). Similar to the single perceptron, the data flows
from the input layer (i.e., input data) to each of the perceptrons
(hereafter nodes) through an activation function. The resulting
information is then passed to all of the nodes in the next layer
and so on until it reaches the output layer (i.e., where the final
prediction is made). Any layer of nodes that are between the in-
put and output are known as hidden layers. Mathematically, the
multilayer network is usually summarized by the following:

¥ =f(x 6), )

where J is the output of the neural network, fis the neural net-
work that is a function of the input data x, and has parameters
(i.e., weights and biases) 6. Like the perceptron, the same fea-
tures from the Part I data example can be plugged in as the in-
put layer (Fig. 1c). Alternatively, ANNs can efficiently handle
images where each pixel can be used as a feature (Fig. 2). Both
methods are shown in the meteorology example in section 3.
The use of ANNs has been much more popular in meteorol-
ogy than a single perceptron. Initial applications of ANNSs in
meteorology date back to the 1990s, which included short-
term forecasts of rain (Kuligowski and Barros 1998); road tem-
peratures (Shao 1998); significant thunderstorms (McCann
1992); damaging winds (Marzban and Stumpf 1998); and even
tornadoes (Marzban and Stumpf 1996). More recent examples
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include the following: short-term forecasting of solar irradi-
ance (McCandless et al. 2016); building radar retrievals of
snowfall (Chase et al. 2021); and forecasting tropical cyclone
intensity (Cloud et al. 2019; Xu et al. 2021).

Before continuing to the next type of neural networks, a
popular neural network-based tool should be mentioned: self-
organizing maps (SOM; Kohonen et al. 1997). Self-organizing
maps are neural networks, but they are an unsupervised ma-
chine learning method. Recall the discussion of supervised
and unsupervised machine learning in Part I, where unsuper-
vised learning is machine learning on unlabeled data and thus
SOMs focus on clustering data without human prescribed
classes. For example, SOM have been used to classify severe
storm environments (Anderson-Frey et al. 2017; Katona and
Markowski 2021), organize synoptic weather patterns in con-
text of warm precipitation events (Wang et al. 2019), and auto
classify near-proximity soundings to supercells (Nowotarski
and Jensen 2013). While unsupervised clustering applications
are useful, they are not the focus of these two manuscripts
(Part I and this part are focused on supervised learning) and
likely deserve to have their own dedicated manuscript discus-
sing all unsupervised techniques (e.g., principal component
analysis, K-means clustering).

3) CONVOLUTIONAL NEURAL NETWORK

While applications of ANNs can be impressive, an additional
advancement to neural networks was introduced by LeCun et al.
(1989) named convolutional neural networks (CNNs). As the
name implies, these neural networks use convolutions where a
convolution is a function that processes an image by systemati-
cally altering the image with a small window called a kernel or
filter. Graphically a convolution is shown in Fig. 3. An image is



1274

Full Res. Image

~

a4 e

Small dBZ Large dBZ

Convolution

Kemnel Original Image

I [
= L LTI
J |

wiy x 0.00

I

x,y

Original Image

WEATHER AND FORECASTING

H
m

wz x 17.9|| wa x 27.5

VOLUME 38

Example Convolution

Kernel Convolved Image

0| ws x 0.00

Value determined by:

2k 2k

Zzwi.j *Dekriy-kej T D

j=0i=0

Kernel Convolved Image

OOOOCE

9| w3 x 0.65

FIG. 3. Convolution graphic. The original hook echo radar reflectivity is located in the top-left corner. The convolution at step 0 is
shown in the top row while the convolution at step 6 is shown in the bottom row. Note these images are coarsened for visualization pur-
poses (i.e., can see the pixels). An animation of this convolution can be found in the Notebook 6 in the code repository. The result of the
full convolution is shown in the top right, blues are negative, reds are positive, and they are unitless.

convolved/filtered by moving this kernel through the image.
The kernel is made up of weights (center of Fig. 3), much like
the nodes in an ANN, which are used to create a weighted
sum that is a convolved image (also known as a feature map).
Note that the weighted sum is passed through an activation
function, as was done in the ANN. The mathematical expression
of a convolution for some pixel p with coordinates x, y (p.,) is

Pry = =0 i=0

where w;;; is a scalar value (i.e., weight) that is learning during
training at the at the ith and jth coordinate, p, i+ ;y—x+;is the
pixel value, k is the floor (i.e., rounded down) of half the
kernel size,> b is a scalar constant (also known as a bias term),
and o is an activation function (e.g., see sigmoid in Part I).
This equation is then repeated for all pixels in the image. For
visual learners, we encourage readers to check out the ani-
mated images in Lagerquist et al’s (2020b) supplemental
material* as well as Notebook 6 in the accompanying code
with this manuscript.’ You might notice that the convolution
equation does not work for the edge of an image (i.e., nega-
tive indices do not make sense in this context). The fix for the
edges of the image is to pad (i.e., add) a row of zeros on all
edges of the image.

®)

WPy jriy—ktj T b,

3 For the example in Fig. 3, the kernel size is 3.
* https://journals.ametsoc.org/view/journals/mwre/148/7/mwrD190372.
xml”tab _body=supplementary-materials.
3 https://github.com/ai2es/'WAF_ML_Tutorial_Part2/blob/main/
jupyter_notebooks/Notebook6_Convolutions.ipynb.
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The idea of a convolution is probably very abstract, so let
us consider an in depth example of how one could work.
Figure 4a shows a classic radar “hook” echo (Fujita 1958).
The data are from Lagerquist et al. (2020b) where the goal is
to determine if the storm in the radar image will produce a
tornado in the next hour. Before jumping into the CNN, first
consider how a human would extract information from a ra-
dar image that might be useful for determining if a tornado
will occur. One thought could be that we could have meteor-
ologists go through thousands of images and encode the hook
(i-e., 0 for no hook, 1 for hook), but that would be labor inten-
sive and subjective. Another thought would be to take the
max reflectivity of this image. That could work, since stronger
storms have stronger updrafts and stronger reflectivity, which
could be more likely to create a tornado, but maximum reflec-
tivity is likely too simple. This thought activity should have
illustrated that the optimal choices of data to extract are not
trivial and since a machine learning model can only be as
good as the predictors it is given, determining skillful inputs
(i.e., features) is vital.

One of the main benefits of a CNN is that it will extract rel-
evant features (i.e., patterns in input data) automatically from
the data it is provided in order to optimize performance.
Thus, there is no need for a human to manually identify im-
portant patterns in the images. Furthermore, since the CNN is
using these convolutional windows, spatial information is au-
tomatically encoded into the features. The CNN does this fea-
ture extraction through the learning of the weights of the
kernels. Sometimes these kernels are referred to as filters
which is likely a more apt description of them. The kernels
filter the features from the image. How the specific weights
are learned is discussed in the following section (section 2b),


https://journals.ametsoc.org/view/journals/mwre/148/7/mwrD190372.xml?tab_body=supplementary-materials
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FIG. 4. A schematic showing how the learned kernels/filters from a CNN extracts features. (a) The same hook echo example from
Fig. 3, but the 25- and 50-dBZ contours are drawn. (b) Colors are the normalized reflectivity values of the output of the first convolution,
where reds are positive and blues are negative (unitless). The same storm contours are included from (a). (c) The result of pooling the im-
age in (b). (d) As in (b), but taking the convolution of (c). (e) Result of the pooling in (d). (f) As in (d), but taking the convolution of (e).

(g) An ANN that takes the pixels of (f) as input.

but know that the CNN tries multiple filters which result in
some amount of error (e.g., truth-ML prediction). This error
is then used to inform the CNN which filters work better than
others and how to tweak the filters to get better performance
(i.e., less error).

While the autoextraction of relevant features is a benefit of
CNNg, it can also lead to unexpected results. A nonmeteorol-
ogy example is from Lapuschkin et al. (2019) where the ma-
chine learning task is the classification of images with classes
of dog, cat, horse, etc. Lapuschkin et al. (2019) showed that
the CNN was using the copyright of images as a dominant
predictor of the horse images. The Lapuschkin et al. (2019)
example illustrates how vital the interrogation of the decisions
of a CNN, and more broadly all machine learning methods, is.
The interrogation of machine learning methods include ex-
plainable artificial intelligence (XAI) methods, which are dis-
cussed in section 3f.

Back to the hook echo example (Fig. 4a). One of the learned
filters is shown in Fig. 4b, which appears to filtering out the
storm location. But notice, that after a single convolution, we
are still stuck with the same scenario from before: how do we
extract information from the new image? (Fig. 4b). To answer
this question, several more convolutions and many filters are
typically used with an additional layer, called a pooling layer, in
between convolution layers. A pooling layer is a way of reduc-
ing the dimensionality of the image, which ultimately allows
the CNN to distill high resolution information into useful fea-
tures. One can view pooling as making an image a lower reso-
lution, like converting high resolution precipitation maps from
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1-km horizontal grid spacing to a more regional scale such as
20 km. The intuition behind pooling layers can be thought of as
summarizing the key findings of a scientific paper. The pooling
layers boil down the most vital information in the paper (im-
age), representing it in a smaller space (less pixels). Pooling is
done similarly to the convolution kernel (i.e., uses a window),
but has static weights which either take an average value (i.e.,
average pooling) or passes the maximum value through (i.e.,
maximum pooling). The typical size of a pooling kernel is two
by two, which effectively halves the dimensions of the image.
In the hook echo example, the result of the pooling is apparent
as the grid becomes coarser and the CNN focuses (i.e., large
values) in on the hook echo location (Fig. 4f).

In the process of summarizing data (i.e., pooling), there is
less space for information to be stored (i.e., less pixels).
Thus, in the CNN the number of filters (i.e., kernels/filters)
typically increases with depth in the CNN (Fig. 5). Drawing
on the same scientific paper analogy, imagine at the begin-
ning of the network the CNN has only one filter and it writes
a full-page summary on one key finding of the paper with
plenty of detail. After another pooling layer, the full-page
summary gets summarized further into one paragraph. An-
other pooling layer results in a sentence, and finally another
layer leaves the filter with one word. The analogy here
keeps the number of filters the same (i.e., one). If instead
the CNN has access to more filters as it goes deeper (i.e.,
more pooling layers), the CNN can then summarize differ-
ent aspects of the key findings, enhancing the total extracted
information by the CNN.
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FIG. 5. Example CNN architecture. The different arrow indicators symbolize different layer types; see the legend in the bottom-left-
hand corner. The blue bracketed text is the size of the images ([x dimension, y dimension, channel/feature dimension]) or vector
(i.e., dense layers). This is the exact architecture for the best performing CNN in section 3.

From the discussion thus far, it is likely not clear how many
layers of convolutions-pooling are needed for a machine
learning task. The exact number of convolutions and pooling
is problem dependent, which is usually determined through
hyperparameter tuning (i.e., trying a bunch of different num-
ber of layers). Furthermore, for some problems a CNN with-
out pooling layers might work better. This can also be tested
with hyperparameter tuning (i.e., train a model with pooling
and without pooling). One way to anticipate the number of
convolutional and pooling layers is needed could be to con-
sider receptive fields, where the maximum pattern size that a
CNN can encode can be anticipated (see Ebert-Uphoff and
Hilburn 2020, for discussion on receptive fields).

After the convolutional layers and their corresponding
pooling layers an ANN is usually appended on to the end
(Fig. 4g). In other words, after the final convolutional layer,
the images are reshaped into a one-dimensional vector (like
Fig. 2) and passed into the ANN. An example of a CNN ar-
chitecture that is used in the data example (section 3d) is
shown in Fig. 5.

Convolutional neural networks are an emerging technique
in the meteorological literature that can do complex tasks. Ex-
amples include the following: detecting fronts in reanalysis
data (Lagerquist et al. 2019, 2020a); estimating tropical cy-
clone intensity for satellite data (Chen et al. 2019; Griffin et al.
2022); determining if a storm will produce severe hail (Gagne
et al. 2019); automatically classifying strongly rotating storms
in numerical weather prediction data (Molina et al. 2021); and
identifying intense convection in satellite imagery (Cintineo
et al. 2020; Lee et al. 2021). While all of the discussion thus
far has been focused on two dimensional convolutions and im-
ages, the idea can be extended to work on one dimensional
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data (e.g., a temperature profile) and to full three-dimensional
volumes (e.g., numerical weather prediction output) or as
time as a third dimension. The only change to go from a two
dimensional convolution to a one- or three-dimensional con-
volution is the shape of the kernel. Both one-dimensional
(e.g., Stock 2021; Harrison et al. 2022) and three-dimensional
convolutions have been used in meteorological applications
(e.g., Lagerquist et al. 2020b; Zhou et al. 2020; Kamangir et al.
2021; Justin et al. 2022).

4) U NETWORK

Even though the ANNs and CNNs described above can do
skillful meteorological tasks, their architecture is best suited
to do a single output (i.e., one-dimensional output) like diag-
nosing how many lightning flashes are in a satellite image
or labeling a radar image as a squall line or supercell. An
advancement to neural network architectures came from
Ronneberger et al. (2015), where an architecture named U
Network (U-Net) was introduced. Originally designed to label
and track biological cells in microscope imagery, this method
lends itself to doing a valuable task called image-to-image
translation. Image-to-image translation is an example of tak-
ing some input image like infrared brightness temperature
and translating it into a map of lightning data. The primary
advantage of U-Nets is it will produce an image with a similar
shape to its inputs.

An example U-Net is shown in Fig. 6. The name U-Net
stems from the general U shape the network is built in. To be
clear, a U-Net is a specific type of CNN, so it contains the
same makeup of convolutional layers and pooling layers of a
CNN, but the U-Net differs in that it contains a series of up-
sampling or unpooling layers [i.e., opposite of the pooling,
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FIG. 6. Example U-Net architecture. As in Fig. 5, the different arrow indicators symbolize different layer types, and the legend is in the
bottom-right-hand corner. The red-blue colored images in the middle are the convolved images. Only three kernels are shown for space
reasons. The blue bracketed text is the size of the images ([x dimension, y dimension, channel/feature dimension]). This is the exact archi-

tecture for the best performing U-Net in section 3.

increasing the resolution through some interpolation tech-
nique (e.g., nearest neighbor)] instead of the ANN added to
the end of the CNN that was shown in Fig. 5.

Each step down the left-hand side in the U (Fig. 6) symbol-
izes the pooling reduction of image resolution. Then at the
bottom of the U, instead of doing additional pooling or flatten-
ing of data to be fed into an ANN (like a CNN), the data are
upsampled (i.e., resampled to include more pixels using an in-
terpolation method like nearest neighbor) and convolved.
Then the new higher resolution images are concatenated (i.e.,
combined) with the same shaped images from the left-hand
side of the architecture (see matrix sizes in Fig. 6) and passed
through a convolution, but this time the number of filters is
halved, as opposed to the number of filters doubling on the
left side of the U. The concatenations from one side of the ar-
chitecture to the other are called skip-connections. The process
of upsampling and concatenating is repeated until you reach
the original input image shape. The left side of the U is often
called the encoding branch while the right side is often called
the decoding branch.

The intuition behind U-Nets is similar to CNNs where con-
volutions are used to extract spatial information. The added
complexity of a U-Net beyond a CNN allows a machine learn-
ing method to produce a whole map (i.e., matrix) of predic-
tions, instead of a single pixel or value (i.e., scalar). This is
extremely useful for meteorological datasets since often in
meteorology, users are interested in spatial distributions of
variables (e.g., dryline location). Given that forecasters have
deemed timeliness an important property of machine learning
meteorological tools (Harrison et al. 2022), the production of
a map from U-Nets is helpful because a CNN trained to do
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the same task as the U-Net will require N more iterations
(e.g., more time) to produce the same map, where N is the
number of pixels in the map.

Examples of U-Nets in meteorology include automatic de-
tection of cyclones in satellite imagery (Kumler-Bonfanti et al.
2020), translating geostationary satellite data into radar data
(Hilburn et al. 2021), short-term forecasts of lightning (Zhou
et al. 2020; Cintineo et al. 2022) and convection (Lagerquist et al.
2021), labeling bow echoes within model data (Mounier et al.
2022), and downscaling (i.e., statistically increasing the reso-
lution) of coarse numerical weather prediction data (Sha
et al. 2020a,b).

5) SUMMARY OF ALL MACHINE LEARNING METHODS

By this point in the paper series (Part I and Part II com-
bined) there have been discussions about a total of 11 machine
learning methods. Thus, in order to organize and summarize
these various techniques and their distinctions, Fig. 7 is pro-
vided. In the graphic there is a brief summary of each method,
some strengths, and some weaknesses.

b. How to train neural networks
1) LEARNING THE WEIGHTS

To determine the weights of a neural network (i.e., ) the
method is similar to the traditional machine learning methods
mentioned in Part I. More specifically, the training data are
used to learn the weights of the machine learning model such
that the loss (i.e., error or cost) is minimized through the use
of derivatives (i.e., gradients). While this simplified intuition
works well for the traditional machine learning models
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FIG. 7. Summary graphic describing all methods discussed in both parts of this tutorial paper. The complexity of the
methods increases farther down the table. Hparam is an abbreviation for hyperparameter tuning.
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FIG. 8. Schematic depicting gradient descent. (top) The blue colored lines are using a smaller learning rate (7)) than the (bottom) red
colored lines. Arrows depict where loss will be after a gradient step. The 6 is the symbol representing the neural network current parame-

ters (i.e., weights and biases).

described in Part I, neural networks require a bit more de-
scription so that readers can navigate common vocabulary
and methods that would be found in a paper describing a me-
teorological neural network.

Before Rumelhart et al. (1986), a roadblock with neural
networks was the efficient and timely training of a neural net-
work with more than a few neurons (i.e., computation took
too long). As a solution, Rumelhart et al. (1986) introduced
an algorithm named backpropagation to solve for the weights
of an ANN. Backpropagation works by sequentially feeding
each training data example through the network, calculating
the error, and then calculating the change in error with re-
spect to each of the weights, also known as the gradient (i.e.,
derivative of loss with respect to ). Readers can think about
this gradient as the quantitative amount to change the weights
in the network such that error on that example is reduced. Af-
ter the gradient is calculated the algorithm adjusts the weights
of the network by following a gradient descent step:

d(loss)
0y =6, tm a9 “4)
where 0, are the updated weights, 6; is the previous weights,
m is the learning rate, and d(loss)/d6 is the gradient of the er-
ror. The learning rate is a scalar value (e.g., 10~%), which tells
the algorithm how large of a step to take.
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To help illustrate this algorithm, consider the top row ex-
ample visualized in Fig. 8. Envision the loss function on some
dataset is a parabola and the neural network at the start (be-
fore any training) has a loss marked by the circle marker in
the subplot labeled Step 0. After seeing a data example and
calculating the gradient, the algorithm takes a step (the size of
the step is determined by the learning rate) which results in
the updated and lower loss in the Step 1 subplot. This is re-
peated, resulting in the subplot labeled Step 2. Eventually
with enough steps the loss should be at a minimum (bottom
of the parabola). The top row of Fig. 8 depicts an appropriate
learning rate for this example. In scenarios where the learning
rate is too large, like the bottom row in Fig. 8, this algorithm
could end up overshooting the minimum and never converg-
ing to the smallest loss. Conversely if the learning rate is too
small (not shown), the algorithm will take too long to con-
verge on the minimum loss. For these reasons, the learning
rate is a hyperparameter that is varied (i.e., multiple values
like 0.01, 0.001, and 0.0001 are tried) when training neural
networks. Recall from Part I 1 that hyperparameters are hu-
man designated choices in a machine learning models configu-
ration (e.g., the number of nodes) or training procedure (e.g.,
the learning rate) that are varied.

Unfortunately in practice, calculating the gradient on every
single training example can be too costly since the typical
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number of training examples is on the order of thousands to
millions and the number of weights in a neural network can
be similarly large. Thus, a trick around this is to use some-
thing called stochastic gradient descent. The idea is instead of
calculating the gradient and updating the weights after seeing
each example, a random batch (i.e., small collection, subset)
of examples is used to estimate the gradient which is then
used to inform the algorithm how to change the weights. The
size of the batch, like the learning rate, is another hyperpara-
meter of neural networks. The new procedure is then, select
one random batch, send the batch of data through the net-
work, calculate the loss, calculate the mean gradient of the
batch and update weights [i.e., take step according to Eq. (4)].
This sequence is repeated until all training data have been
sent through the neural network. After the entire training da-
taset has been passed through the network, the network has
been trained for one epoch. Neural networks are often trained
for many epochs (e.g., 50, 100, 1000, etc.) usually until the loss
does not change much (i.e., changes less than 10~%)® or when
overfitting is detected.

In practice, stochastic gradient descent is just one method
of optimizing a neural network. Other optimizers can be used
to train neural networks, but for the sake of this tutorial, they
all generally follow the same steps as stochastic gradient de-
scent. The names of other popular optimizers a meteorologist
might encounter are the following: the adaptive moment esti-
mation (Adam; Kingma and Ba 2017) and root-mean-square
propagation (RMSprop; Hinton et al. 2012).

2) LOSS FUNCTIONS

Just like the traditional machine learning methods, neural
networks can be used for both categories of supervised ma-
chine learning: classification and regression. The primary dif-
ferences between a neural network for classification and a
neural network for regression is which loss function is opti-
mized and what output activation is chosen (i.e., activation of
the last node or layer). For classification, typical loss functions
include binary cross-entropy and categorical cross-entropy ac-
companied with a sigmoid [see Fig. 3 and Eq. (6) in Part I] or
softmax (a variant of sigmoid) output activation function for
binary and multiclass classification tasks, respectively. Mean-
while for regression, common loss functions include mean ab-
solute error and mean squared error accompanied with a
linear output activation. More sophisticated loss functions can be
used, like the fractions skill score (Roberts and Lean 2008), and
are an active area of research within machine learning for meteo-
rology (Ebert-Uphoff et al. 2021; Lagerquist and Ebert-Uphoff
2022).

3) REGULARIZATION AND OVERFITTING

Neural networks can often contain hundreds, thousands or
even millions of trainable parameters. While this enables neu-
ral networks to be very flexible, it can also enable the network
to overfit to the training data very easily. Thus, there are

% This can be user defined, but 10~° is a common choice.
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some specialized methods that can help prevent overfitting
(i.e., regularize) the neural network. A popular method of
regularization is called dropout (Srivastava et al. 2014). Drop-
out is where neurons within a layer of the network are ran-
domly turned off (set to 0) in the training process. The
neurons that are turned off are changed after each batch, but
the percentage of neurons turned off in the layer is constant
over the training time and is a hyperparameter choice (e.g.,
10% of neurons). Then when the model is used in inference
mode (i.e., prediction time) the dropout layers are not used,
meaning all the neurons are used. The intuition behind drop-
out is that if random neurons are turned off during training,
the network is forced to learn redundant pathways and cannot
simply memorize a single pathway through the network for
each example it sees.

A second regularization method commonly used is called
data augmentation. Data augmentation are synthetic altera-
tions made to the training data. These alterations include
things like random rotations, random flips (up-down or left—
right or both), and adding random noise. The reason this is
done is because adding these slight alterations provides the
neural network with slightly different examples to learn from,
which in turn makes your neural network model more resis-
tant to overfitting and more robust to things like measure-
ment errors. Data augmentation is also a way to increase your
training sample size without having to actually add more data
(see Lagerquist et al. 2020b, for a meteorological example us-
ing data augmentation).

A third method of regularization is called batch normalization
(Toffe and Szegedy 2015). Batch normalization, as the name sug-
gests, normalizes the values of a batch of data within the neural
network. The reason for this stems from the use of batches them-
selves, which are needed for timely training of neural networks.
Because the training process randomly selects a batch of data to
estimate the gradient from, that batch of data is not guaranteed
to have properties that are well suited for stable training, like be-
ing normally distributed. Thus, to assure that training goes as
smoothly as possible, batch normalization layers can be inserted
after any layer in a neural network.

4) HARDWARE

A meteorologist will likely encounter discussions of what
hardware (i.e., computer details) is being used to do the neu-
ral network training. This discussion comes from the issue
that training a neural network can be computationally very
slow on a normal computer [i.e., central processing units
(CPU)]. As a way to speed things up, the open-source neural
network software packages, named Tensorflow (Abadi et al.
2015) and PyTorch (Paszke et al. 2019), have built their soft-
ware to allow users to utilize a computer chip called a graphi-
cal processing unit (GPU). The GPU enables the calculation
of the convolution of an image and the gradients to be much
faster, which ultimately accelerates training. While there are
many different types of GPUs and CPUs and many different
neural network tasks, in general a GPU can often reduce
training time by a factor of 2-10. The Google Colab note-
books (see data availability section) that accompany this
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manuscript leverage the freely available GPUs provided by
Google in the cloud.

3. Neural network application and discussion
a. Problem statements

Here we restate the machine learning problem statements
explored in this paper. We again apply the Storm Event Imag-
ery (SEVIR; Veillette et al. 2020) dataset to two main tasks:
1) Does this image contain a thunderstorm? and 2) How
many lightning flashes are in this image? For more informa-
tion about the SEVIR data see Part I. We assume the GOES
Lightning Mapper (GLM) observations are unavailable and
we need to use the other measurements (e.g., infrared bright-
ness temperature) as features to estimate if there are lightning
flashes (i.e., classification), and how many of them are there
(i.e., regression). Both tasks 1 and 2 are centered on using ma-
chine learning models having a singular (i.e., one dimensional)
output. As we mentioned in section 2a(4), U-Nets offer more
than a single output (i.e., two dimensional), as they recreate an
entire image as an output. Thus, the problem statements for
the U-Net application are then as follows: 1b) Label the pixels
in this image where there are lightning flashes; and 2b) For
each pixel, diagnose the number of flashes in that pixel.

b. Data

Before jumping into the results of the trained neural net-
works, we want to emphasize an intersection between neural
networks and the traditional methods discussed in Part I. The
discussion from Part I (their section 3b) regarding data cura-
tion applies to neural networks as well. Specifically, a dataset
used to develop a neural network must also be split into inde-
pendent subsets for training, validation, and testing the
model. Thus, to follow Part I we use the same datasets with a
slight alteration. While the original SEVIR dataset is primed
for successful machine learning, the size of the raw dataset
(approximately one terabyte in storage size) is cumbersome
for the intents of a tutorial and could not be used on most per-
sonal computers. Thus, as an effort to make this dataset more
accessible as a tutorial, we have reduced its size. To do this,
we first reduced all images to have the same resolution of the
gridded lightning data (48 X 48 pixels; approximately 8 km X
8 km pixels). Figure 9 shows an example of the full resolution
visible image and its corresponding low resolution version.
After the images were resampled, one random continuous
hour (12 images) of the four total hours (48 images) for each
storm event is kept. Since we are keeping the same number of
storm events, we keep the training, validation and testing data
splits the same as Part I, which were 1 January 2017-1 June
2019 for training and split every other week in the rest of
2019 into the validation and test sets. Doing both of these re-
samplings of SEVIR results in a more manageable dataset
(approximately two gigabytes in storage size), while also pre-
serving 60000 training samples and about 12000 validation
and test samples. We name this subset of SEVIR: sub-SEVIR,
and the location of the dataset can be found in the data avail-
ability section.
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FI1G. 9. Example of (top left) the full resolution visible image and
(bottom right) its reduced resolution in sub-SEVIR. The numbers
correspond to the number of pixels along each dimension.

Owing to reduced resolution, the sub-SEVIR dataset con-
tains different information. Given our goal of comparing the
neural network models of this paper to the machine learning
methods of Part I, we must re-extract the same features from
sub-SEVIR. Specifically, we extract the following percentiles:
0, 1, 10, 25, 50, 75, 90, 99, 100. These percentiles are then used
as input features for retraining the traditional machine learn-
ing methods and to serve as a baseline comparison with
trained neural networks.

c¢. Training the networks

After reading the section on how to train neural networks
(section 2b), the reader might notice that there are numerous
hyperparameters for neural networks. In Part I, the tradi-
tional machine learning models shown were trained with the
default hyperparameter choices as defined by the scikit-learn
Python package (scikit-learn; Pedregosa et al. 2011). The idea
of default hyperparameter choices does not necessarily exist
with neural networks. Thus, it is good practice for those train-
ing neural networks to run some sort of hyperparameter
search (i.e., vary a bunch of the parameters) because users are
not guaranteed to get good performance with some starting
parameter choices. For example, recall the discussion about
choosing a learning rate in section 2b(1).

All the trained neural network models shown here are the
result of a hyperparameter search. We conducted 100 random
hyperparameter configurations for each neural network trained
and systematically varied things like the number of layers, the
number of neurons, the loss etc. In the end we chose one of the
100 models to show in the following section. These were chosen
based on their performance in the validation set. For readers in-
terested in the exact hyperparameter choices we varied to
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F1G. 10. Classification metrics (a) ROC curve diagram. All thin blue lines are the traditional machine learning meth-
ods from Part I [logistic regression (LgR), naive Bayes (NB), decision tree (DT), random forest (RF), and gradient
boosted decision tree (GBT). The thick lines are the neural networks trained (ANN,,,,: ANN trained with engineered

features; ANN,,;;: ANN trained using pixels as features).

The values in legend are the AUC values. (b) The perfor-

mance diagram for each machine learning model (Roebber 2009).

find the best performing models, see Figs. A1-A3 in the
appendix.

d. Classification

The first machine learning task we consider is 1) to classify
a SEVIR image if it has at least one lightning flash within it.
To serve as a comparison, all of the traditional machine learn-
ing methods from Part I were retrained on the sub-SEVIR da-
taset. Their performance on the validation dataset is shown as
the thin blue lines and blue markers in Fig. 10.

For task 1, we also trained three neural networks. The first
is an ANN trained with the same input features (i.e., the table
of percentiles extracted from each image) as the traditional
machine learning models (red solid line and red circle
Fig. 10). This ANN trained on the engineered features (i.e.,
the percentiles of the image) effectively reproduces the per-
formance of the best traditional machine learning methods
(e.g., gradient boosted trees). Since there is a relatively simi-
lar performance of random forest, gradient boosted trees,
and ANN, it would be better to use the tree-based methods
over the ANN operationally for this task. This is suggested
because tree-based methods are less complex and thus more
interpretable (cf. Fig. 1 in Flora et al. 2022a). Using a less
complex and more interpretable model also provides a
better opportunity to meet the consistency point made by
Murphy (1993).

The second neural network trained is another ANN but
this time it was trained using each pixel as a feature (e.g.,
Fig. 2). The reason a second ANN is trained is to see if the
ANN could learn important features on its own, without
a domain scientist (i.e., meteorologist) extracting pertinent
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information (i.e., the percentiles from the satellite images). While
the pixel trained ANN has generally good skill (AUC > 0.9,
CSI > 0.7 red; dash-dot line Fig. 10a; red square Fig. 10),
the result is worse than all other methods discussed so far
(Fig. 10b).

The last neural network trained for task 1 is a CNN. To be
explicit, recall that the CNN uses the raw images as inputs
and convolves them to extract features. The result of training
a CNN on the sub-SEVIR data provides one of the best per-
forming machine learning methods (black line Fig. 10a; red
star Fig. 10), matching the skill of the gradient boosting trees
and the ANN trained on the engineered features. Note that
the CNN only marginally outperforms the other methods
on the performance diagram and is likely not a significant
difference.

It might be surprising to see that the ANNs do not sub-
stantially outperform the tree based methods on this task
despite the added complexity of neural networks and their
training. This is a common pitfall for machine learning users.
In fact, there is growing evidence that the tree-based methods
can often outperform neural networks and deep learning on
tabular data (i.e., data contained in a spreadsheet; Shwartz-Ziv
and Armon 2022). A distinction is made between tabular and
nontabular datasets here because spatial details can contain
substantial information for the machine learning task and is
not always easily quantified into a tabular dataset. For exam-
ple, consider assessing a storm’s tornadic potential. While us-
ing composite radar reflectivity as a feature could be useful
(e.g., strong reflectivity value means a strong storm), there is
likely more information contained in the shape of the radar
echo (e.g., is there a hook echo?). Thus, given the amount of



AUGUST 2023 CHASE

UNET Prob.

Observed Flashes

a)

ET AL. 1283

1.0

POD

0.0

FI1G. 11. Trained U-Net results for classification. (a) Example input and output of the U-Net. (b) Performance dia-
gram for the U-Net evaluated on every pixel. The numbers next to the markers show the probability threshold to clas-

sify a pixel as containing lightning or not.

additional effort required to explore the hyperparameters in
neural networks, our suggestion is that if you have a tabular
dataset, start with random forest and gradient boosted trees
for your machine learning model. Often times this will result
in a useful machine learning model without the headache of
doing a large hyperparameter search or needing specialized
computers (i.e., GPUs). Otherwise, if you have a spatial data-
set (e.g., radar images) and you are unsure of what features to
extract, then the extra effort of CNNs could be beneficial.

Moving beyond the single output models, a U-Net for clas-
sification is also trained and evaluated. Recall that a U-Net
(e.g., Fig. 6) outputs a map with the same shape as the input
images. In other words, a U-Net tasked with problem state-
ment 1b (in section 3a) produces an output map where each
pixel is assigned a probability of it containing lightning. An
example output is shown in Fig. 11a. A U-Net can be evalu-
ated similarly to the previous models and a performance dia-
gram for the trained U-Net is shown in Fig. 11b. Note on
Fig. 11b that instead of a single marker the figure shows a line
with many markers. This is because the threshold for deciding
if a pixel is labeled as no lightning or lightning is varied from
zero to one at 0.05 increments. This is done because a model
could potentially get better results if a probability threshold
other than 0.5 is used (which was shown in Fig. 10), which is
the case for this U-Net. Note that this could also be done with
the all of the other machine learning methods (except support
vector machines) shown in Fig. 10b, but the threshold of
0.5 generally works well for those models.

Comparing Figs. 10b and 11b, initially it seems like the U-
Net is performing worse than the ANNs and CNN because
the line on Fig. 11b is well below the location of all other
models in Fig. 10b. That being said, it is unfair to compare the
two sets of performance statistics because the U-Net is being
evaluated on every single pixel rather than on the image as a
whole. Given the added complexity in problem statement 1b,
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the U-Net performance is encouraging with CSI values of 0.36
when using a probability threshold of 0.25. This offset from
the probability threshold of 0.5 happens frequently in meteo-
rology and can be mostly attributed to rare phenomena and
the training dataset being imbalanced.

It might not seem like the lightning flashes are rare, but if
you consider the total number of pixels that contain lightning,
they make up less than one percent of the total amount of pix-
els. Thus, given the number of no-lightning pixels far out-
weigh the lightning pixels, the U-Net will learn this natural
distribution and skew its output to account for the more likely
outcome. The result is that on the performance diagram, a
lower probability threshold can perform better than using the
default 0.5. While altering the probability threshold for pre-
trained models can improve performance, other mitigation
techniques can be taken and are focused on adjusting the ra-
tio of nonzero pixels to zero pixels in the training dataset.

One way to adjust the ratio of pixels is by subsampling the
48 X 48 pixel images into smaller patches (e.g., 24 X 24) and
only train on patches that have a larger proportion of nonzero
pixels. This tends to work well but is more resource intensive
because patching the data requires the user to then stitch the
patches back together while using the model output. Another
way would be to adjust or change the loss function to weight
the classes differently. By default most loss functions weight
all classes equally. There are ways to adjust the loss function
and tell your machine learning model that the rare classes are
more important than the training data suggests. For examples
of custom loss functions see Ebert-Uphoff et al. (2021). Alter-
natively, one could do both subsampling and a differently
weighted loss function. These alterations can be considered
part of the hyperparameter tuning of the U-Net training. A
meteorological example of exploring various U-Net training
procedures can be found in Mounier et al. (2022), where a
U-net is used to identify bow echoes. Note that weighted loss
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FIG. 12. One-to-one diagrams with all regression methods trained on sub-SEVIR. The x axis is the machine learning model prediction
(9) and the y axis is the truth (y): (a) gradient boosted trees; (b) artificial neural network using the tabular data; (c) artificial neural net-
work using the pixel data; (d) convolutional neural network; (e) U-Net evaluated on every single pixel in the images; and (f) the U-Net

evaluation, but on the sum of all lightning flashes in an image.

functions and resampling the training data is not exclusive to
U-Nets. These methods can be explored for all neural networks.

e. Regression

Considering task 2, the goal of the machine learning is to
now determine the number of flashes that are occurring in a
SEVIR image. Like the previous section, the goal is to com-
pare the neural network methods presented in this paper to
the traditional machine learning methods of Part I. To make
the comparison more concise, we only show the best perform-
ing regression model trained on the sub-SEVIR dataset,
which was the gradient boosted trees. Recall that for this re-
gression task, only data examples that had more than one
flash in them were used as the training data. The performance
of the gradient boosted tree on the validation dataset is shown
in Fig. 12a and the red bar in Fig. 13.

For task 2, a similar suite of neural networks as the classifi-
cation task are trained and their performance is characterized
in the same way as regression in Part I. The first neural net-
work trained is the ANN using the engineered features as in-
puts. Akin to the results of the classification task, this ANN
achieves similar performance to the gradient boosted trees.
The ANN has a high density of points that follow the diagonal
in Fig. 12b and has a mean absolute error, root-mean-square
error, and R? values very close to the gradient boosted tree
(blue bar Fig. 13). That being said, the bias of the ANN is
larger than the bias of the gradient boosted tree (Fig. 13).
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A second neural network trained is an ANN using the pixels
as features. It is clear that this model has issues. The points on
the one-to-one plot are more spread out and not highly con-
centrated along the diagonal (oranges Fig. 12c). All metrics
are worse compared to the ANN and gradient boosted tree
trained on the engineered features. This result is very similar
to the classification model, where the model has some skill but
performance is considerably worse when the ANN has to learn
what features are important based on the pixels as input.

A third network trained is a CNN. The CNN achieves simi-
lar performance to the ANN trained on the engineered fea-
tures and the gradient boosted tree. The points are more
densely aligned along the diagonal in Fig. 12d (purples), and
the quantitative metrics (purple bar Fig. 13) are effectively
the same as the ANN, but it does have worse bias (Fig. 13a).
Thus, like the classification task the CNN was able to extract
relevant features to make a skillful designation of the number
of lightning flashes in the image.

A regression U-Net is also trained and evaluated. Instead
of determining the probability of lightning in each pixel, the
designation of the regression U-Net is the number of flashes
in each pixel. A similar problem occurs with the regression
U-Net as with the classification U-Net when trying to com-
pare the U-Nets to the other neural networks. Consider the
pixelwise evaluation of the regression U-Net (Figs. 12e and
13). The U-Net has a clear underestimation of the number of
flashes compared to the observed flashes and yet the mean ab-
solute value, bias, and root-mean-square error are close to
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FIG. 13. Metric bar charts with all regression methods trained on sub-SEVIR.

zero. This evaluation might initially seem contradictory, but
the pixelwise distribution of flashes is two orders of magni-
tude smaller than the image wise number of flashes (e.g.,
mean pixel number of flashes is 3 while mean image number
of flashes is 150). Since the magnitude is smaller, the metrics
are correspondingly smaller. Thus, the comparison of this
U-Net to the other neural networks is not necessarily fair.

As an alternative evaluation, the sum of U-Net predicted
flashes across all pixels in an image can be calculated. The
sum of all flashes in the images results in approximately an or-
der of magnitude offset in the designation (Fig. 12f). Like the
underestimation of the U-Net in the classification example,
the regression underestimation probably occurs because skew
of the distribution of pixels with lightning and pixels without
lightning. The regression example is further compounded by
the strong left skew (i.e., toward zero flashes) in the distribu-
tion of pixels with lightning flashes. The previously discussed
mitigation techniques for the classification U-Net can also be
applied to regression (e.g., changing the loss, patching etc.).

f- Explainable artificial intelligence

As mentioned in the motivation of Part I, machine learning
methods are often seen as black boxes where the user cannot
see what the machine learning is using to make its decisions
and predictions. To combat the opaqueness of machine

Brought to you by NOAA Central

learning methods we present two methods, permutation im-
portance and accumulated local effects, which can be applied
to the traditional machine learning methods that made the
black box more transparent. Here we show something similar
but applied to neural networks. In machine learning, the
methods used to explain a machine learning output are com-
monly referred to as explainable artificial intelligence (XAI).
The XALI field is a place of active research development and
readers can see Flora et al. (2022a,b) for additional discussion
of XAI techniques for the traditional machine learning meth-
ods and Mamalakis et al. (2022a,b) for XAI techniques for
neural networks. Know that the following discussion and ex-
amples only show the XAI techniques applied to CNNs, but
these techniques can be applied to all the neural networks dis-
cussed in section 3.

1) PERMUTATION IMPORTANCE

The first XAI method shown here is the same as Part I,
permutation importance (Breiman 2001; Lakshmanan et al.
2015). We show this method because it is a powerful method
that can help users understand which inputs to the machine
learning model are most important. Also, we choose to show
this technique because of how flexible the method is to be
used on any machine learning method.

Library | Unauthenticated | Downloaded 08/02/23 01:58 PM UTC
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FIG. 14. Permutation importance results of the convolutional neural networks for both classification and regression.
The yellow bar is the vertically integrated liquid, the red bar is the infrared, blue is the water vapor, and black is the
visible. (a),(b) The single-pass backward results and (c),(d) multipass backward results. (left) Classification and (right)
regression. All results are computed on 30 random samples of 250 images from the training dataset. The dashed line
is the original score before shuffling any features, while the dotted line is the final score for shuffling all variables

(only multipass).

The general procedure is the same as discussed in Part I
[section 3c(1)]. Input features are shuffled one by one, such
that the change in the desired metric quantifies the feature’s
importance to the machine learning model (i.e., single pass).
Since we are doing this technique on images, the difference
from Part I is that first the pixels within an image are shuffled,
then the order of images is shuffled to properly make the in-
put features random. From there the procedure is exactly the
same as in Part I.

Figure 14 is an example of permutation importance applied
to both the CNN for classification and the CNN for regres-
sion. The interpretation of this figure is the same as Part I, but
now features are grouped according to the variable from
which they originated. For example, the single pass result
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shows that the vertically integrated liquid is the most impor-
tant feature for diagnosing if an image has at least one flash in
it, while the infrared channel is the most important feature for
determining the number of flashes in an image. Remember
that the most important variable is identified by how much
skill is reduced when shuffling that specific variable while
keeping the other variables unchanged. Figure 14a shows the
vertically integrated liquid reduces AUC by about 0.4 (i.e.,
from an AUC near 1 to an AUC near 0.6), and Fig. 14b shows
the MAE increases from about 50 to more than 200 flashes
when the infrared is shuffled. The multipass method (Figs. 14c,d)
also shows that the vertically integrated liquid and infrared are
the most important features for the classification and regres-
sion task, respectively. Recall from Part I that to interpret the
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FIG. 15. SHAP values for an example in the SEVIR dataset (19 Aug 2019). (a) Water vapor, (b) infrared, (c) vertically integrated liquid,
and (d) visible. Note that values for (a)—(d) are scaled and are thus unitless. (¢) GOES Lightning Mapper number of flashes in each pixel.
(f)~(i) SHAP values for each respective channel of the input. The sum of all SHAP values in the image is annotated in the top-right cor-
ner. (j) Sum of all SHAP values across the channels with the total sum, expected value, and the ML output is written in the top-right

corner.

multipass result the successive reduction in skill is how to see
the most important features. Thus, notice that the reduction in
skill from the dashed black line in Figs. 14c and 14d is largest
compared to the change from the top bar to the second bar,
and the second bar to the third bar etc. For this example, the
multipass method shows the same result as the single pass
method, but this is not always the case.

These designated important features make sense meteoro-
logically. Vertically integrated liquid can be interpreted simi-
larly to radar reflectivity. If one knows where to look at an
image where there is no radar reflectivity measured, it would
be simple to say there is no lightning in the image. Meanwhile,
since the regression task is evaluated on only examples that
have at least one flash, the model is leaning more heavily on
infrared. This could be because the amount of cold cloud tops
in an image is plausibly related to how much lightning is in
the image (e.g., more updrafts can lead to more clouds which
could lead to more lightning), but further testing would need
to be done to confirm or deny this explanation of the machine
learning reasoning.

2) DEEP SHAP

The second XAI method we discuss is called Deep SHAP
(Lundberg and Lee 2017), which estimates Shapley values
(i.e., SHAP values; Shapley 1953) that quantify the effect
each input feature contributes to the total machine learning
model output. SHAP values are calculated using a branch of
mathematics called game theory, which enables the SHAP
values to consider interactions between features (e.g., water
vapor is correlated to infrared brightness temperature) while
also allowing timely computation. While understanding how
SHAP values are exactly calculated can be complicated, their
interpretation is relatively straightforward and has some at-
tractive properties.

Consider an example of SHAP values for the classification
CNN model on one of the examples (Fig. 15). We can see in
this example that there is deep convection in the bottom half
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of the image, characteristic of cold cloud tops (Figs. 15a,b),
large vertically integrated liquid values (Fig. 15¢) and lots of
observed lightning (more than 1000 flashes in this 5-min ob-
servation; Fig. 15¢). Using Deep Shap, the estimated SHAP
values for each feature are shown in the corresponding image
below the input data (Figs. 15fj). The way to interpret SHAP
values are that negative values (blue colors in Figs. 15f-j)
have negative attribution, or contribute negatively to the out-
put (i.e., evidence against lightning in the image), while posi-
tive values (red colors in Figs. 15f-j) have positive attribution
(i.e., evidence for lightning in the image).

A general interpretation of the SHAP values in Fig. 15 is
that the ML model is using pixels where there are clouds for
its output (i.e., SHAP colors show up where cloud is). While
this might seem like an unimportant result, it is never guaran-
teed that the ML model will use logical decision techniques.
There have been notable examples in the computer science
literature where the ML identifies unexpected parts of an im-
age to do its output, like a copyright symbol or a company
logo (Lapuschkin et al. 2019). It is then encouraging that the
ML is considering the clouded part of the image to diagnose if
there is lightning within it. Another interpretation from the
SHAP values is that the clouded region contributes both posi-
tively and negatively to determining if there is lightning in this
image. This decision making process is not expected but could
be a result of the ML task of determining if there is at least
one flash in the image and not determining where in the image
the lightning is. Since the ML task is for the entire image,
then the SHAP values should also be interpreted more holisti-
cally where the sum of the SHAP values across the clouded
area can be compared against the sum outside the clouded
area, where the sum is larger in the clouded region (i.e., more
red than blue).

The summation of SHAP is enabled by its additive formu-
lation. By design the SHAP values, when added to the ex-
pected value (i.e., mean output from all images) results in the
output of ML model. This additive property enables more
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than the discussion above of the clouded and nonclouded re-
gion, but also the relative importance of every input channel
to the output of the ML. For example, consider the channel
wise SHAP sums in the top right corner of Figs. 15f-i. The
SHAP values for vertically integrated liquid are the largest
sum with a value of 0.35, followed by infrared brightness tem-
perature with a value of 0.1, and then water vapor and visible
with values of 0.02 and 0.01, respectively. This is a similar re-
sult to the permutation importance result which provided
evidence that the vertically integrated liquid is the most impor-
tant input variable. Last if you consider some of the SHAP
values in a pixelwise sense (Fig. 15j), the SHAP values mainly
outline the edges of the vertically integrated liquid input
channel.

The additive property of SHAP values can be extended be-
yond this /ocal (i.e., one sample or case) explanation. The
SHAP values can be summed across all dataset examples to
get a similar global explanation to what permutation impor-
tance gave us. The channelwise sum across all examples in the
validation dataset are shown in Fig. 16. The result is the same
as permutation importance, showing that the vertically inte-
grated liquid is most important, followed by the infrared
brightness temperature, water vapor brightness temperature
and then visible reflectance. It is encouraging to get the same
result from two different XAI methods, which builds confi-
dence in the end result.

While the SHAP discussion has been centered on the classi-
fication task, the same analysis can be done on the regression
task but is not done here for brevity. Similarly, the discussion
in this paper has been focused on neural networks, but SHAP
can also be applied to the traditional methods of Part 1. For
more examples of SHAP being used in the meteorological re-
search readers can look over these references: Gensini et al.
(2021), Griffin et al. (2022), Mamalakis et al. (2022a,b), van
Straaten et al. (2022), and Flora et al. (2022a,b).

4. Summary

This manuscript is the second of a pair of machine learning
tutorial papers designed for the operational meteorological
community. The main focus of this paper was the plain lan-
guage discussion of neural networks. More specifically the
neural networks discussed included artificial neural networks
(ANNSs; ie., multilayer perceptrons), convolutional neural
networks (CNNs), and U-shaped networks (U-Net). Similar
to Part I of this tutorial series (i.e., Chase et al. 2022), the goal
of this paper was to provide an overview of the many terms
involved in neural networks while also providing entry level
intuition of each method and their training procedures. Fur-
thermore, the same simple meteorological example using the
Storm Event Imagery dataset (SEVIR; Veillette et al. 2020)
to identify lightning presence and amount was reconducted
with the neural network methods to allow for direct compari-
son of all machine learning methods discussed in both parts of
the series. The following list explicitly summarizes the results
of this paper:
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FIG. 16. Global SHAP ratio on the validation dataset. The chan-
nelwise ratio (i.e., sum across each input variable) of all SHAP val-
ues to the total SHAP sum. These SHAP values were evaluated on
the entire validation dataset.

1) Discussed the various nuances and terms associated with
neural networks (section 2)

2) Discussed three different neural network architectures in
detail (section 2a)

3) Demonstrated a classification and regression task to diag-
nose the presence and number of lightning flashes in a sat-
ellite image (sections 3d and 3e)

4) Showed two explainable artificial intelligence techniques
applied to a CNN (sections 3d and 3e)

5) Released python code to conduct all steps and examples
in this manuscript (see the data availability statement)

As technology continually advances, unprecedented meteo-
rological measurements and simulations will continue to occur.
For example, the GOES-R series of geostationary satellites pro-
vides 0.5-km grid spacing of visible imagery that was only previ-
ously obtainable from polar orbiting satellites (e.g., MODIS).
Another example includes the growing efforts to begin global
simulations of weather using convective-allowing horizontal
grid spacing (e.g., less than 4 km; Stevens et al. 2019). With
these improved measurements and simulations come daunting
increases of dataset sizes and then potentially information over-
load (i.e., too much data to use). Thus, it is imperative that me-
teorologists are familiar with tools that can reduce their
individual burden. Machine learning is poised to handle the fu-
ture terabytes/petabytes of meteorological data and potentially
can provide valuable tools for meteorologists to make trustwor-
thy and well-informed data-driven decisions.
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version of the repository that was available at time of publica-
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org/record/7011372). The original github repo for SEVIR is
located at https://github.com/MIT-Al-Accelerator/neurips-
2020-sevir.

APPENDIX

Hyperparameter Tuning Specifics

All the models shown in the paper are the result of a
fairly extensive hyperparameter search. Each of the following
figures contains the different hyperparameters that were var-
ied. Note that only 100 models were trained for each model
type (e.g., ANN regression was one model), so it is very pos-
sible that not all possible hyperparameter solution sets were
run. Figures A1-A3 are for the ANN, CNN, and U-Net, re-
spectively, and red indicates the best configuration choice for
regression, blue indicates the best configuration choice for
classification, and purple means the best configuration choice
for both model types. The best configurations were deter-
mined by the best performance on the validation dataset.

Artificial Neural Network Hyperparameters

Hyperparameter Value
Number of layers 1, 2, 3, 4]
Number of neurons [4,8,16,32]

Activation function

relu,sigmoid,tanh]

dropout range

0.05,0.5]; (0.182,0.120)

optimizer [adam,adagrad,sgd,rmsprop|
batchnorm on,off]

batch size 32,64,128,256,512]

loss (reg. only) MSE,MAE]

FIG. A1l. The hyperparameters for the artificial neural networks.
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Convolutional Neural Network Hyperparameters

Hyperparameter Value

Number of conv. layers 1, 2, 3]

Conv. kenel size 3x3,5x5,7x7]
Kernel activation function [relu,sigmoid,tanh)|
Number of kernels 4,8,16,32]
Number of dense layers 1, 2, 3,4]

Number of neurons 4,8,16,32]

Activation function

relu,sigmoid,tanh|

dropout range

0.05,0.5]; (0.3886,0.250)

optimizer [adam,adagrad,sgd,rmsprop|
batchnorm on,off]

batch size 32,64,128,256,512]

loss (reg. only) [MSE,MAE]

FIG. A2. The hyperparameters for the convolutional neural networks.

U-Network Hyperparameters

Hyperparameter

Value

Number of conv. layers

1,2, 3]

Conv. kenel size

3x3,5x5, 7x7|

Kernel activation function

relu,leaky-relu,elu,prelu]

Number of kernels 4,8,16,32]

Depth of U-Net 1,2, 3, 4]

optimizer adam,adagrad,sgd,rmsprop]
batchnorm on,off]

batch size 32, 64,128,256,512]

loss (reg. only) [MSE,MAE]

FIG. A3. The hyperparameters for the U-Network.
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